Writing a logger in 30
minutes

Scott Little KISWLJ

About Me

My name is Scott (KI5SWLJ). | was licensed a year ago, and have been
programming for almost six years in languages such as Python 3, JavaScript,
Rust and Flutter.

I've competed in about 7 programming contests and won two awards.

With amateur radio, my father, my brother, and | go out to do Parks on the
Air frequently.

Goals

- Tounderstand basic Python programming

- Tounderstand the basic structure of ADIF tags, records,
and files.

- Towrite alogger that can successfully upload a QSO to
the ARRL Logbook of the World

Python 101

Variables

A variable is a name that has a value. If you know what a variableisin
mathematics, you know what a variable is in Python.

Variables have only one operation on them in Python: assignment.
Assignment has two parts: naming the variable and giving it a value.

Python 3.18.11 (main, Apr 4 2823, 22:10:32) [GCC 12.3.8] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> x = 1

>>> print(x)

1

>>> x = "KISWLJ"

>>> a_list = [3,2,1]

>>> print(a_list[8])

3

>>> a_dict = { "ham": "radio" }
>>> print(a_dict["ham"])

radio

>>> print(a_dict)

{'ham': 'radio'}

>>>

Basic variable types

Functions and classes

A function is a named block of code that you can reuse and may return avalue. (£ (x) = x? isafunction)

print() is a function, just like input () | a_function(argument1, arg2,

Functions are written like this: X =

another_function()

Functions can use any type of code.

Python 3.10.18 (main, Feb 7 2823, 12:19:31) [GCC 12.2.8] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> def f():

print("de KI5SWLJ")
>>> f()
de KIbWLJ

>>> def add(a, b):
return a + b

>>> add(2, 2)
A
>>> add(2, 2) + 2

6
>>> I

Control flow

1T is used to conditionally execute a block of code.

for & while loops are used to conditionally repeat a block of code.

Python 3.18.11 (main, Apr 4 2823, 22:18:32) [GCC 12.3.8] on linux
ype "help", "copyright", "credits" or "license" for more information.
PD>> x = 1]
>>> if x ==
print("hamburgers")
. else:
print("hot dogs")
hot dogs
>>> while x < 4:
print(x)
X = x + 1

>>> for food in ["pie", "turkey", "stuffing"]:
print ("I like to eat: " + food)

I like to eat: pie
I like to eat: turkey
I like to eat: stuffing

If - Elif - Else, For loops, and While loops

Comparison Operations

Equality: A ==

Inequality:A !'= B

Ordering:

Lessthan: A < B, Greaterthan:A > B

Less thanor Equalto: A <= B, Greater thanor Equalto:A >= B

= VS ==

Programmers pronounce “x = 1" as “X has the value of one”, or “Xis one”.
In Python, =" DOES NOT MEAN EQUALS.

To say “Does X equal one?”, a programmer would write “X == 1"

Number operations

Addition, denoted by a +

Subtraction, denoted by a -

Multiplication, denoted by a *

Division, denoted by a/

Floor division, denoted by // (rounds to lowest whole number)
Exponentiation, denoted by **

Casting, converting a string to a number, denoted by int (<something>)

ython 3.18.11 (main, Apr 4 2823, 22:18:32) [GCC 12.3.8] on linux
ype "help", "copyright", "credits" or "license" for more information.

b>> int("21") - 28

D>> ”21” 20 29

raceback (most recent call last):

File "<stdin>", line 1, in <module>
ypeError: unsupported operand type(s) for -:

str' and 'int'

Number operations

String operations

Indexing: Read a single character: “KI5SWLI”[0] == “K”(0 is the first element, 1 is 2")

Slicing: Reading only a part of astring: “KI5SWLJ"”[1:4] == “I5W"” (does not include the
final char)

Replacing: “KI5S5WLJ".replace("”5", "“4") == “KI4WLJ"
Splitting: “KI5SWLJ" .split (“5") == ["KI", "“WLJ"]

Searching: Find the index of another string: “KI5WLJ"” .index (“5") ==
Length: len (“KI5WLJ") ==

Casting: turning a number into astring: str(1) + “1" == “11"

= C— i’:'*_}"“:_‘;;l:;: 1tation

Python 3.18.11 (main,

Apr 4 2823, 22:18:32) [GCC 12.3.8] on linux

Type "help", "copyright", "credits" or "license" for more information.

s = "I am a person

s[8]
s[4]

s[5:13]
'a person'
>>> g[5:]
'a person’

>>> s.replace("person", "ham")
'I am a ham'
>>> s

'I am a person'

String operations

>>> s = s.replace("person", "ham")

>>> s.split(" ")[3]
"ham'

>>> s split(™ ")

[T, ', 'a', 'ham']
>>> s.index("a")

2

>>> s[2]

>>> len(s)
18
55> Str(ll]ll) + |I2II

List Operations

Indexing: get the value at a particularindex: [3, 2, 1][1] ==

Slicing: getting a part (slice) of the list: [3, 2, 1]1[0:2] == [3, 2]

Appending: adding avaluetotheendof alist: [1, 2].append(3) == [1, 2, 3]

Deleting: removing avalue fromthelist: x = [1, 2, 3]; del x[0]; x == [2, 3]
Iteration: doing something to each value: the below example calls process on each element of list.
for x in list:

process(x)

A 3

Python 3.18.11 (main, Apr 4 2823, 22:18:32) [GCC 12.3.8] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> 1 = [3,2,1]

1.append(0)
1

2, 1, 0]

del 1[1]

1

1, 0]

for number in 1:
print(number/2)

List operations

Dictionary Operations

Dictionaries have keys that are mapped to values

Dictionaries are defined like this: § “key”: “value”, “key2”: 3.14 }%.

Usually, keys are strings, while values can be numbers, strings, lists or even other dictionaries.
You canaccessanarray:dict[“key2"] togetthevalue(3.14).

You canassignto anarray:dict[“key2"”] = 6.28tosetthevalue

To iterate over adictionary,use for key, value in dict.items()

~/Kars—adir-presentatlion
Python 3.18.11 (main, Apr 4 2823, 22:18:32) [GCC 12.3.8] on linux
Type "help", "copyright", "credits" or "license" for more information
>>> dict = { "key": "value", "age": 15, "callsign": "KISWLJ" }
>>> dict
{'key': 'value', 'age': 15, 'callsign': 'KI5SWLJ'}
>>> dict["callsign"]
'KISWLJ'
>>> dict["age"]
1%
>>> dict["age"] +1
16
>>> dict["age"] = 16
>>> for key, value in dict.items():
print("My " + key + " is " + str(value))

My key is value
My age is 16
My callsign is KISWLJ

Dictionary Operations

ADIF Basics

ADIF (https://adif.org)

ADIF.org

ADIF is acommon format to exchange log data. It takes the format of:

- Oneor more tags in the header
- The text <eoh>
- Oneor morerecords, where:

- Eachrecord contains one or more tags, and
- Thetext <eor>

What is a tag?

<call:6>KIbWLJ <FRE9:§>7.2@B <EOR>

Neer O e %80 Number of chars in

the value The actual value

<adif_ver:5>3.8.5
<programid:5>HAMRS
<programversion:5>1.8.6
<EOH>

==
<band:3>16m
<call:6>KJ5AIE
<freq:6>28.390
<mode:3>SSB
<my_sig:4>POTA
<my_sig_info:6>K-3512
<operator:6>KI5WLJ
<gso_date:8>20230408
<gso_date_off:8>20230408
<rst_rcvd:2>59
<rst_sent:2>59
<time_on:6>174929
<tx_pwr:2>90
<eor>

Structure of an ADIF file:

The header has a few special tags
to help programs read it. <eoh>
ends the header.

This file contains one record.
Like the header, it has many tags.

Each record is ended with an <eor>
(end of record).

Required fields

The ARRLs Logbook of the World requires a few tags to have a complete QSO:

- CALL (The other station’s callsign)

- FREQ (Your frequency in MHz)

- MODE (One of a few defined modes, but we will only handle SSB)
- QSO DATE (The date the QSO started)

- TIME_ON (The time the QSO started)

- STATION_CALLSIGN (The callsign you used on the air)

Writing the logger

Overview

Program starts

The program sets up a bl@

@er uses commands to log co@

/ N

Program ends

AN /

The ADIF Parser

To parse ADIF, we have to discard the
header, then read the tag name, tag length
and then read length number of chars after
the end of the tag data.

Function called

ADIF ‘;arser

Are there any more records?

No

Y

Return the final list

!

Function exits

parse_adif(filename):

output = []
open(filename) adif:
data = adif.read()

header_and_records = data.split("<EOH>")
header_and_records[8]

records = header_and_records[8]

records = records.split("<eor>")

record records:
record_dict = {}
record = record.strip().replace("\r","").replace("\n","")
len(record.strip()) >
record = record[1:]
print(record)

colon_loc = record.index(":")
tag_name = record[:colon_loc]
record = record[colon_loc+1:]

angle_loc = record.index(">")
length = record[:angle_loc]
length = int(length)

record = record[angle_loc+1:]

value = record[:length]
record = record[length:]
record_dict[tag_name] = value

record_dict != {}:
output.append(record_dict);
output

Function called

Pars eﬁ setup

Create a list to add records too

@ﬁg‘n on the text "<eor@

Return the list of dictionaries

Parse each record

Discard the opening angle bracket ("<")

Everything up to the colon (":") is the tag name

Everything up to the ">" is the length

o

Append the dictionary to the list

r‘s
“ @

!

Function exits

Full diagram of the parser

Python 3.10.11 (main, Apr 4 2023, 22:10:32) [GCC 12.3.8] on linux
. Type "help", "copyright", "credits" or "license" for more information.
TQStIng the parser >>> from pprint import pprint
>>> from adif import parse_adif
>>> pprint(parse_adif("example.adif"))
[{'band': '16m',
*eall’: "KISATIE',
‘freq': '28.390',
'mode': 'SSB',
'my_sig': 'POTA',
'my_sig_info': 'K-3512',
'operator': 'KISWLJ',
'gso_date': '28230488',
'gso_date_off': '208230488',
‘rst.rcvd': B9’
‘rst.sent’': "'59°,
'time_on': '174929',
"tx_pwr': '98'}]
>>> I

User Input

The User Interface @a command from the user

@rstand the com@

We will be making a command-line
interface, where users type commands such
as “cd /” or “chkdisk”

ui(adif_data):

from pprint import pprint
import datetime

callsign =

nn

True:
command = input("enter command> ")
x = command.split(" ")
action = x[8]
arguments = x[1:]

The main Ul loop

UI function called

full UI loop v

@and and arguments f@
Use if-elif-else to understand th@
Set your callsign Set a tag for one contact Add a new contact Print a contact List all contacts @ @

Loop executes again

Nt

| UI function returns, program stops

How all the commands fit together

Quit, List, and Print

To quit, we use the keyword action == "quit":
break, which exits the loop.

. SO | £ ",
To list, we iterate over each action == llSt. .
contact and print the callsign, record adif_data:
a tab, then the frequency print(record["call"] + "\t" + record["freq"])

action == "print":
idx = int(arguments[8])
that contact’s data. pprint(adif_data[idx])

To print, we get an index from
the user and print out all of

action == "call":

Call & Set callsign = arguments[8]

action == "set":

We use a simple
p idx = int(arguments[8])

assignment to set the
user’s callsign.

target = arguments[1]

value = arguments[2]

For set, we use adif_data[idx][target] = value
“double-indexing’, print(target + " of record " + str(idx) +

1)

set to: + value)

because adif_data[idx]
returns a dictionary
which we then index to
assign the value to it.

action == "add":
call = input("callsign> ")

Adding a contact freq = input(*freqencys)

now = datetime.datetime.now(datetime.timezone.utc)
gso_date = now.strftime("%Y%m%d")
time_on = now.strftime("%H%M")

record = {
Ycallt:z call,
. "freq": freq,
We get the callsign and frequency "mode": "SSB",
from the user, then use the datetime "gso_date": gso_date,
module that’s included with Python "time_on": time_on,
to get the current UTC time. We then station_callsign®: callsign

}
adif_data.append(record)

use some included functions to get
the formats YYYYMMDD and
HHMM for ADIF

Saving contacts

action == "save":
filename = arguments[8]

save(adif_data, filename)

Here, we simply take the filename from the
user and pass it to the save () function we
are about to write.

Function called

Create a default header

A

@ecord into ADIF
Add the record to the file

Is there another record?

Saving the log

This is the easiest part — only ten lines of

code. No
\ 4
\ 4
>

Function returns

save(adif_data, filename):
buffer = "";
buffer = buffer + "<adif_ver:5>3.1.4<programid:4>KARS<EOH>\n"
record adif_data:
key, value record.items():

length = str(len(value))
adif = "<"+key+":"+length+">"+value
buffer = buffer + adif
buffer += "<eor>\n"
open(filename, "w")
f.write(buffer)

Our save function

Function begins

Processing a tag

Find the length of the value using "len()"

Function ends

Add the text "<eor>" to the buffer

) J

Is there another record?

Write the buffer to disk

Saving ADIF

Copy a basic head@

Yes

\ 4

@ng to store the final data in

A 4

Read a record from our list

Read a tag from the record

@g functions to turn the key and value @

Function diagram

~/kars-adif-presentation
Python 3.10.11 (main, Apr 4 2823, 22:16:32) [GCC 12.3.8] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from adif import save
>>> data = [{
-« eall®: KIBWLI™,
o Efreqi s AR A
. "mode": "SSB",
.. "gso_date": "28238624",
.. "time_on": "1337",
.. "station_callsign": "KT5TX"
. 3]

save(data, "test.adi")
quit()

File: test.adi

<adif_ver:5>3.1.4<programid:4>KARS<EOH>
<call:6>KI5WLJI<freq:6>14.324<mode:3>SSB<gso_date:8>20823B8624<time_on:4>1337<station_callsign:5>KT5TX<eor>

Testing our save function

Demonstration

https://docs.google.com/file/d/1As5usYaEcv8XxVonis7Bz34_YJYBgi0t/preview

More resources

The specification for ADIF is located at https://adif.org/adif

Python guides are available all over the internet, google “basic python guide” or
“python help <something>"

You can run your own Python code at https://replit.com/l/python3

View the source code, presentation, or diagrams at https://ta.rdis.dev/ha/adif.html

https://adif.org/adif
https://replit.com/l/python3
https://ta.rdis.dev/ha/adif

