
Writing a logger in 30
minutes

Scott Little KI5WLJ

About Me

My name is Scott (KI5WLJ). I was licensed a year ago, and have been

programming for almost six years in languages such as Python 3, JavaScript,

Rust and Flutter.

I’ve competed in about 7 programming contests and won two awards.

With amateur radio, my father, my brother, and I go out to do Parks on the

Air frequently.

Goals

- To understand basic Python programming

- To understand the basic structure of ADIF tags, records,

and files.

- To write a logger that can successfully upload a QSO to

the ARRL Logbook of the World

Python 101

Variables

A variable is a name that has a value. If you know what a variable is in

mathematics, you know what a variable is in Python.

Variables have only one operation on them in Python: assignment.

Assignment has two parts: naming the variable and giving it a value.

Basic variable types

Functions and classes

A function is a named block of code that you can reuse and may return a value. (f(x) = x2 is a function)

print() is a function, just like input()

Functions are written like this:

Functions can use any type of code.

Control flow

if is used to conditionally execute a block of code.

for & while loops are used to conditionally repeat a block of code.

If - Elif - Else, For loops, and While loops

Comparison Operations

Equality: A == B

Inequality: A != B

Ordering:

Less than: A < B, Greater than: A > B

Less than or Equal to: A <= B, Greater than or Equal to: A >= B

“=” vs “==”

Programmers pronounce “x = 1” as “X has the value of one”, or “X is one”.

In Python, “=” DOES NOT MEAN EQUALS.

To say “Does X equal one?”, a programmer would write “X == 1”

Number operations

Addition, denoted by a +

Subtraction, denoted by a -

Multiplication, denoted by a *

Division, denoted by a /

Floor division, denoted by // (rounds to lowest whole number)

Exponentiation, denoted by **

Casting, converting a string to a number, denoted by int(<something>)

Number operations

String operations

Indexing: Read a single character: “KI5WLJ”[0] == “K”(0 is the first element, 1 is 2nd)

Slicing: Reading only a part of a string: “KI5WLJ”[1:4] == “I5W” (does not include the
final char)

Replacing: “KI5WLJ”.replace(“5”, “4”) == “KI4WLJ”

Splitting: “KI5WLJ”.split(“5”) == [“KI”, “WLJ”]

Searching: Find the index of another string: “KI5WLJ”.index(“5”) == 2

Length: len(“KI5WLJ”) == 6

Casting: turning a number into a string: str(1) + “1” == “11”

String operations

List Operations

Indexing: get the value at a particular index: [3, 2, 1][1] == 2

Slicing: getting a part (slice) of the list: [3, 2, 1][0:2] == [3, 2]

Appending: adding a value to the end of a list: [1, 2].append(3) == [1, 2, 3]

Deleting: removing a value from the list: x = [1, 2, 3]; del x[0]; x == [2, 3]

Iteration: doing something to each value: the below example calls process on each element of list.

for x in list:

process(x)

List operations

Dictionary Operations

Dictionaries have keys that are mapped to values

Dictionaries are defined like this: { “key”: “value”, “key2”: 3.14 }.

Usually, keys are strings, while values can be numbers, strings, lists or even other dictionaries.

You can access an array: dict[“key2”] to get the value (3.14).

You can assign to an array: dict[“key2”] = 6.28 to set the value

To iterate over a dictionary, use for key, value in dict.items()

Dictionary Operations

ADIF Basics

ADIF (https://adif.org)

ADIF is a common format to exchange log data. It takes the format of:

- One or more tags in the header

- The text <eoh>
- One or more records, where:

- Each record contains one or more tags, and

- The text <eor>

What is a tag?

Required fields

The ARRL’s Logbook of the World requires a few tags to have a complete QSO:

- CALL (The other station’s callsign)
- FREQ (Your frequency in MHz)
- MODE (One of a few defined modes, but we will only handle SSB)
- QSO_DATE (The date the QSO started)
- TIME_ON (The time the QSO started)
- STATION_CALLSIGN (The callsign you used on the air)

Writing the logger

Overview

The ADIF Parser
To parse ADIF, we have to discard the

header, then read the tag name, tag length

and then read length number of chars after

the end of the tag data.

Full diagram of the parser

Testing the parser

The User Interface

We will be making a command-line

interface, where users type commands such

as “cd /” or “chkdisk”

The main UI loop

How all the commands fit together

Quit, List, and Print
To quit, we use the keyword

break, which exits the loop.

To list, we iterate over each

contact and print the callsign,

a tab, then the frequency

To print, we get an index from

the user and print out all of

that contact’s data.

Call & Set
We use a simple

assignment to set the

user’s callsign.

For set, we use

“double-indexing”,

because adif_data[idx]

returns a dictionary

which we then index to

assign the value to it.

Adding a contact

We get the callsign and frequency
from the user, then use the datetime
module that’s included with Python
to get the current UTC time. We then
use some included functions to get
the formats YYYYMMDD and
HHMM for ADIF

Saving contacts

Here, we simply take the filename from the

user and pass it to the save() function we

are about to write.

Saving the log

This is the easiest part — only ten lines of

code.

Our save function

Function diagram

Testing our save function

Demonstration

https://docs.google.com/file/d/1As5usYaEcv8XxVonis7Bz34_YJYBgi0t/preview

More resources

The specification for ADIF is located at https://adif.org/adif

Python guides are available all over the internet, google “basic python guide” or

“python help <something>”

You can run your own Python code at https://replit.com/l/python3

View the source code, presentation, or diagrams at https://ta.rdis.dev/ha/adif.html

https://adif.org/adif
https://replit.com/l/python3
https://ta.rdis.dev/ha/adif

